Перевод: со всех языков на все языки

со всех языков на все языки

with studied neglect

  • 1 ἠμελημένως

    ἠμελημένως, Adv. [tense] pf. part. [voice] Pass. of ἀμελέω,
    A in a state of neglect,

    διάγειν Isoc.Ep.8.10

    ;

    ἠ. ἔχειν X.Mem.3.11.4

    ;

    ἐς προῦπτον κίνδυνον ἐκπέμπεσθαι Arr.Ind.20.3

    ; with studied neglect,

    ἑαυτὴν ἠ. πως κοσμήσασα D.C.51.12

    ; carelessly, Max.Tyr.28.5.

    Greek-English dictionary (Αγγλικά Ελληνικά-λεξικό) > ἠμελημένως

  • 2 Language

       Philosophy is written in that great book, the universe, which is always open, right before our eyes. But one cannot understand this book without first learning to understand the language and to know the characters in which it is written. It is written in the language of mathematics, and the characters are triangles, circles, and other figures. Without these, one cannot understand a single word of it, and just wanders in a dark labyrinth. (Galileo, 1990, p. 232)
       It never happens that it [a nonhuman animal] arranges its speech in various ways in order to reply appropriately to everything that may be said in its presence, as even the lowest type of man can do. (Descartes, 1970a, p. 116)
       It is a very remarkable fact that there are none so depraved and stupid, without even excepting idiots, that they cannot arrange different words together, forming of them a statement by which they make known their thoughts; while, on the other hand, there is no other animal, however perfect and fortunately circumstanced it may be, which can do the same. (Descartes, 1967, p. 116)
       Human beings do not live in the object world alone, nor alone in the world of social activity as ordinarily understood, but are very much at the mercy of the particular language which has become the medium of expression for their society. It is quite an illusion to imagine that one adjusts to reality essentially without the use of language and that language is merely an incidental means of solving specific problems of communication or reflection. The fact of the matter is that the "real world" is to a large extent unconsciously built on the language habits of the group.... We see and hear and otherwise experience very largely as we do because the language habits of our community predispose certain choices of interpretation. (Sapir, 1921, p. 75)
       It powerfully conditions all our thinking about social problems and processes.... No two languages are ever sufficiently similar to be considered as representing the same social reality. The worlds in which different societies live are distinct worlds, not merely the same worlds with different labels attached. (Sapir, 1985, p. 162)
       [A list of language games, not meant to be exhaustive:]
       Giving orders, and obeying them- Describing the appearance of an object, or giving its measurements- Constructing an object from a description (a drawing)Reporting an eventSpeculating about an eventForming and testing a hypothesisPresenting the results of an experiment in tables and diagramsMaking up a story; and reading itPlay actingSinging catchesGuessing riddlesMaking a joke; and telling it
       Solving a problem in practical arithmeticTranslating from one language into another
       LANGUAGE Asking, thanking, cursing, greeting, and praying-. (Wittgenstein, 1953, Pt. I, No. 23, pp. 11 e-12 e)
       We dissect nature along lines laid down by our native languages.... The world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... No individual is free to describe nature with absolute impartiality but is constrained to certain modes of interpretation even while he thinks himself most free. (Whorf, 1956, pp. 153, 213-214)
       We dissect nature along the lines laid down by our native languages.
       The categories and types that we isolate from the world of phenomena we do not find there because they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... We are thus introduced to a new principle of relativity, which holds that all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar or can in some way be calibrated. (Whorf, 1956, pp. 213-214)
       9) The Forms of a Person's Thoughts Are Controlled by Unperceived Patterns of His Own Language
       The forms of a person's thoughts are controlled by inexorable laws of pattern of which he is unconscious. These patterns are the unperceived intricate systematizations of his own language-shown readily enough by a candid comparison and contrast with other languages, especially those of a different linguistic family. (Whorf, 1956, p. 252)
       It has come to be commonly held that many utterances which look like statements are either not intended at all, or only intended in part, to record or impart straightforward information about the facts.... Many traditional philosophical perplexities have arisen through a mistake-the mistake of taking as straightforward statements of fact utterances which are either (in interesting non-grammatical ways) nonsensical or else intended as something quite different. (Austin, 1962, pp. 2-3)
       In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules..., representing general properties of the whole system of concepts.... At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language. (Bierwisch, 1970, pp. 171-172)
       In studying the evolution of mind, we cannot guess to what extent there are physically possible alternatives to, say, transformational generative grammar, for an organism meeting certain other physical conditions characteristic of humans. Conceivably, there are none-or very few-in which case talk about evolution of the language capacity is beside the point. (Chomsky, 1972, p. 98)
       [It is] truth value rather than syntactic well-formedness that chiefly governs explicit verbal reinforcement by parents-which renders mildly paradoxical the fact that the usual product of such a training schedule is an adult whose speech is highly grammatical but not notably truthful. (R. O. Brown, 1973, p. 330)
       he conceptual base is responsible for formally representing the concepts underlying an utterance.... A given word in a language may or may not have one or more concepts underlying it.... On the sentential level, the utterances of a given language are encoded within a syntactic structure of that language. The basic construction of the sentential level is the sentence.
       The next highest level... is the conceptual level. We call the basic construction of this level the conceptualization. A conceptualization consists of concepts and certain relations among those concepts. We can consider that both levels exist at the same point in time and that for any unit on one level, some corresponding realizate exists on the other level. This realizate may be null or extremely complex.... Conceptualizations may relate to other conceptualizations by nesting or other specified relationships. (Schank, 1973, pp. 191-192)
       The mathematics of multi-dimensional interactive spaces and lattices, the projection of "computer behavior" on to possible models of cerebral functions, the theoretical and mechanical investigation of artificial intelligence, are producing a stream of sophisticated, often suggestive ideas.
       But it is, I believe, fair to say that nothing put forward until now in either theoretic design or mechanical mimicry comes even remotely in reach of the most rudimentary linguistic realities. (Steiner, 1975, p. 284)
       The step from the simple tool to the master tool, a tool to make tools (what we would now call a machine tool), seems to me indeed to parallel the final step to human language, which I call reconstitution. It expresses in a practical and social context the same understanding of hierarchy, and shows the same analysis by function as a basis for synthesis. (Bronowski, 1977, pp. 127-128)
        t is the language donn eґ in which we conduct our lives.... We have no other. And the danger is that formal linguistic models, in their loosely argued analogy with the axiomatic structure of the mathematical sciences, may block perception.... It is quite conceivable that, in language, continuous induction from simple, elemental units to more complex, realistic forms is not justified. The extent and formal "undecidability" of context-and every linguistic particle above the level of the phoneme is context-bound-may make it impossible, except in the most abstract, meta-linguistic sense, to pass from "pro-verbs," "kernals," or "deep deep structures" to actual speech. (Steiner, 1975, pp. 111-113)
       A higher-level formal language is an abstract machine. (Weizenbaum, 1976, p. 113)
       Jakobson sees metaphor and metonymy as the characteristic modes of binarily opposed polarities which between them underpin the two-fold process of selection and combination by which linguistic signs are formed.... Thus messages are constructed, as Saussure said, by a combination of a "horizontal" movement, which combines words together, and a "vertical" movement, which selects the particular words from the available inventory or "inner storehouse" of the language. The combinative (or syntagmatic) process manifests itself in contiguity (one word being placed next to another) and its mode is metonymic. The selective (or associative) process manifests itself in similarity (one word or concept being "like" another) and its mode is metaphoric. The "opposition" of metaphor and metonymy therefore may be said to represent in effect the essence of the total opposition between the synchronic mode of language (its immediate, coexistent, "vertical" relationships) and its diachronic mode (its sequential, successive, lineal progressive relationships). (Hawkes, 1977, pp. 77-78)
       It is striking that the layered structure that man has given to language constantly reappears in his analyses of nature. (Bronowski, 1977, p. 121)
       First, [an ideal intertheoretic reduction] provides us with a set of rules"correspondence rules" or "bridge laws," as the standard vernacular has it-which effect a mapping of the terms of the old theory (T o) onto a subset of the expressions of the new or reducing theory (T n). These rules guide the application of those selected expressions of T n in the following way: we are free to make singular applications of their correspondencerule doppelgangers in T o....
       Second, and equally important, a successful reduction ideally has the outcome that, under the term mapping effected by the correspondence rules, the central principles of T o (those of semantic and systematic importance) are mapped onto general sentences of T n that are theorems of Tn. (P. Churchland, 1979, p. 81)
       If non-linguistic factors must be included in grammar: beliefs, attitudes, etc. [this would] amount to a rejection of the initial idealization of language as an object of study. A priori such a move cannot be ruled out, but it must be empirically motivated. If it proves to be correct, I would conclude that language is a chaos that is not worth studying.... Note that the question is not whether beliefs or attitudes, and so on, play a role in linguistic behavior and linguistic judgments... [but rather] whether distinct cognitive structures can be identified, which interact in the real use of language and linguistic judgments, the grammatical system being one of these. (Chomsky, 1979, pp. 140, 152-153)
        23) Language Is Inevitably Influenced by Specific Contexts of Human Interaction
       Language cannot be studied in isolation from the investigation of "rationality." It cannot afford to neglect our everyday assumptions concerning the total behavior of a reasonable person.... An integrational linguistics must recognize that human beings inhabit a communicational space which is not neatly compartmentalized into language and nonlanguage.... It renounces in advance the possibility of setting up systems of forms and meanings which will "account for" a central core of linguistic behavior irrespective of the situation and communicational purposes involved. (Harris, 1981, p. 165)
       By innate [linguistic knowledge], Chomsky simply means "genetically programmed." He does not literally think that children are born with language in their heads ready to be spoken. He merely claims that a "blueprint is there, which is brought into use when the child reaches a certain point in her general development. With the help of this blueprint, she analyzes the language she hears around her more readily than she would if she were totally unprepared for the strange gabbling sounds which emerge from human mouths. (Aitchison, 1987, p. 31)
       Looking at ourselves from the computer viewpoint, we cannot avoid seeing that natural language is our most important "programming language." This means that a vast portion of our knowledge and activity is, for us, best communicated and understood in our natural language.... One could say that natural language was our first great original artifact and, since, as we increasingly realize, languages are machines, so natural language, with our brains to run it, was our primal invention of the universal computer. One could say this except for the sneaking suspicion that language isn't something we invented but something we became, not something we constructed but something in which we created, and recreated, ourselves. (Leiber, 1991, p. 8)

    Historical dictionary of quotations in cognitive science > Language

  • 3 Percy, John

    SUBJECT AREA: Metallurgy
    [br]
    b. 23 March 1817 Nottingham, England
    d. 19 June 1889 London, England
    [br]
    English metallurgist, first Professor of Metallurgy at the School of Mines, London.
    [br]
    After a private education, Percy went to Paris in 1834 to study medicine and to attend lectures on chemistry by Gay-Lussac and Thenard. After 1838 he studied medicine at Edinburgh, obtaining his MD in 1839. In that year he was appointed Professor of Chemistry at Queen's College, Birmingham, moving to Queen's Hospital at Birmingham in 1843. During his time at Birmingham, Percy became well known for his analysis of blast furnace slags, and was involved in the manufacture of optical glass. On 7 June 1851 Percy was appointed Metallurgical Professor and Teacher at the Museum of Practical Geology established in Jermyn Street, London, and opened in May 1851. In November of 1851, when the Museum became the Government (later Royal) School of Mines, Percy was appointed Lecturer in Metallurgy. In addition to his work at Jermyn Street, Percy lectured on metallurgy to the Advanced Class of Artillery at Woolwich from 1864 until his death, and from 1866 he was Superintendent of Ventilation at the Houses of Parliament. He served from 1861 to 1864 on the Special Committee on Iron set up to examine the performance of armour-plate in relation to its purity, composition and structure.
    Percy is best known for his metallurgical text books, published by John Murray. Volume I of Metallurgy, published in 1861, dealt with fuels, fireclays, copper, zinc and brass; Volume II, in 1864, dealt with iron and steel; a volume on lead appeared in 1870, followed by one on fuels and refractories in 1875, and the first volume on gold and silver in 1880. Further projected volumes on iron and steel, noble metals, and on copper, did not materialize. In 1879 Percy resigned from his School of Mines appointment in protest at the proposed move from Jermyn Street to South Kensington. The rapid growth of Percy's metallurgical collection, started in 1839, eventually forced him to move to a larger house. After his death, the collection was bought by the South Kensington (later Science) Museum. Now comprising 3,709 items, it provides a comprehensive if unselective record of nineteenth-century metallurgy, the most interesting specimens being those of the first sodium-reduced aluminium made in Britain and some of the first steel produced by Bessemer in Baxter House. Metallurgy for Percy was a technique of chemical extraction, and he has been criticized for basing his system of metallurgical instruction on this assumption. He stood strangely aloof from new processes of steel making such as that of Gilchrist and Thomas, and tended to neglect early developments in physical metallurgy, but he was the first in Britain to teach metallurgy as a discipline in its own right.
    [br]
    Principal Honours and Distinctions
    FRS 1847. President, Iron and Steel Institute 1885, 1886.
    Bibliography
    1861–80, Metallurgy, 5 vols, London: John Murray.
    Further Reading
    S.J.Cackett, 1989, "Dr Percy and his metallurgical collection", Journal of the Hist. Met. Society 23(2):92–8.
    RLH

    Biographical history of technology > Percy, John

  • 4 Stuart, James

    [br]
    b. 2 January 1843 Balgonie, Fife, Scotland
    d. 12 October 1913 Norwich, Norfolk, England
    [br]
    Scottish engineer and educator.
    [br]
    James Stuart established the teaching of engineering as a university discipline at Cambridge. He was born at Balgonie in Fife, where his father managed a linen mill. He attended the University of St Andrews and then studied mathematics at Cambridge University. In 1867 he took up a post as Assistant Tutor at Trinity College, Cambridge, where his skills as a teacher were quickly recognized. The University was at that time adapting itself to the new systems of instruction recommended by the Royal Commission on university reform in the 1850s, and Stuart took an active part in the organization of a new structure of inter-collegiate lecture courses. He made an even more significant contribution to the establishment of extramural courses from which the Cambridge University extension lecture programme developed. This began in 1867, when Stuart took adult classes in Manchester and Crewe. The latter, in particular, brought him into close contact with those involved in practical mechanics and stimulated his interest in the applied sciences. In 1875 he was elected to the newly created Chair of Mechanism and Engineering in Cambridge, and he set out energetically to recruit students and to build up a flourishing unit with its own workshop and foundry, training a new generation of engineers in the applied sciences.
    In November 1884 Stuart was elected to Parliament and embarked on an active but somewhat undistinguished career in politics as a radical Liberal, becoming amongst other things a keen supporter of the women's suffrage movement. This did not endear him to his academic colleagues, and the Engineering School suffered from neglect by Stuart until he resigned the Chair in 1890. By the time he left, however, the University was ready to recognize Engineering as a Tripos subject and to accept properly equipped teaching laboratories, so that his successor J.A. Ewing was able to benefit from Stuart's pioneering work. Stuart continued his political activities and was appointed a Privy Councillor in 1909. He married Elizabeth Colman after resigning the Chair, and on the death of his father-in-law in 1898 he moved to Norwich to take on the direction of the family mustard firm, J. \& J.Colman Ltd.
    [br]
    Further Reading
    Hilken, 1967, Engineering at Cambridge, Ch. 3, pp. 58–106.
    AB

    Biographical history of technology > Stuart, James

См. также в других словарях:

  • Neglect of probability — The neglect of probability bias, a type of cognitive bias, is the tendency to completely disregard probability when making a decision under uncertainty and is one simple way in which people regularly violate the normative rules for decision… …   Wikipedia

  • Hemispatial neglect — Classification and external resources Hemispatial neglect is most frequently associated with a lesion of the right parietal lobe (in yellow, at top) ICD 9 …   Wikipedia

  • JERUSALEM — The entry is arranged according to the following outline: history name protohistory the bronze age david and first temple period second temple period the roman period byzantine jerusalem arab period crusader period mamluk period …   Encyclopedia of Judaism

  • Consciousness — Representation of consciousness from the seventeenth century. Consciousness is a term that refers to the relati …   Wikipedia

  • John James Waterston — (1811 June 18, 1883) was a Scottish physicist, a neglected pioneer of the kinetic theory of gases.Early lifeWaterston s father, George, was an Edinburgh sealing wax manufacturer and stationer, a relative of the family of Robert and George… …   Wikipedia

  • Ascetical theology — is the organized study or presentation of spiritual teachings found in Christian Scripture and the Church Fathers that help the faithful to more perfectly follow Christ and attain to Christian perfection . The word ascetic is from the Greek word… …   Wikipedia

  • dictionary — /dik sheuh ner ee/, n., pl. dictionaries. 1. a book containing a selection of the words of a language, usually arranged alphabetically, giving information about their meanings, pronunciations, etymologies, inflected forms, etc., expressed in… …   Universalium

  • 1970 Bhola cyclone — Infobox Hurricane Name=1970 Bhola Cyclone Basin=NIO Year=1970 Image location=November 1970 Bhola Cyclone.jpg November 11, 1970, at 0858 UTC. Type=tropical cyclone Formed=November 7, 1970 Dissipated=November 13, 1970 1 min winds=112 10 min… …   Wikipedia

  • Solomon ibn Gabirol — Solomon ibn Gabirol, also Solomon ben Judah ( he. שלמה בן יהודה אבן גבירול, Shelomo ben Yehuda ibn Gevirol ; ar. أبو أيوب سليمان بن يحيى بن جبيرول, Abu Ayyūb Suleiman ibn Yahya ibn Jabirūl ; la. Avicebron, a corruption of Ibn Gabirol ) was an… …   Wikipedia

  • apparent — 1 *evident, manifest, patent, distinct, obvious, palpable, plain, clear Analogous words: discernible, noticeable (see corresponding verbs at SEE): *perceptible, ponderable, tangible, appreciable Antonyms: unintelligible Contrasted words: *obscure …   New Dictionary of Synonyms

  • education — /ej oo kay sheuhn/, n. 1. the act or process of imparting or acquiring general knowledge, developing the powers of reasoning and judgment, and generally of preparing oneself or others intellectually for mature life. 2. the act or process of… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»